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An axisymmetric viscous-transonic equation is presented. A nozzle-type similar- 
ity solution of this equation has been found, which describes the initial stages in 
the development of shock waves downstream of a converging-diverging nozzle 
throat. This solution is an extension of a two-dimensional solution found previ- 
ously (Sichel 1966). By an appropriate choice of an arbitrary scaling constant 
solutions were found such that there is essentially a weak normal shock near the 
axis with effects of wall and shock-wave curvature occurring only a t  a sufficiently 
large radius. The upstream and downstream asymptotic behaviour of these 
viscous-transonic nozzle solutions has been investigated. 

1. Introduction 
A similarity solution of the inviscid transonic equation describing flow near the 

throat of a converging-diverging nozzIe was found by Tomotika & Tamada (195.0) 
in the two-dimensional case and by Tomotika & Hasimoto (1950) in the axi- 
symmetric case. These solutions describe both the symmetrical Taylor flow with 
subsonic velocities upstream and downstream of the throat and the asymmetrical 
subsonic-supersonic Meyer flow, but do not permit a smooth transition between 
the two types of flow. Since this transition is accompanied by the formation of 
shock waves downstream of the nozzle throat this difficulty appears due t o  the 
neglect of viscous effects. If the longitudinal or compressive viscosity and the 
thermal conductivity are taken into account the inviscid transonic equation 
should be replaced by a ‘viscous-transonic ) equation (Cole 1949; Sicliel 1963; 
Szaniawski 1963;Ryzhov & Shefter 1964). Sichel(1966)foundnozzle-typesimilar- 
ity solutions of the two-dimensional viscous-transonic equation that do permit 
the smooth transition from the Taylor to the Meyer type of flow and display the 
initial stages in shock-wave formation downstream of the nozzle throat. An 
axisymmetric viscous-transonic nozzle solution has also been found and is the 
main subject of the present paper. 

2. The axisymmetric nozzle solution 
The viscous-transonic equation for the axisymmetric flow of a perfect gas can 

and, since the flow is irrotational to the order of approximation used in deriving ( l), 

u, = v,. (2)  
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I11 these equations X and R are dimensionless axial and radial co-ordinates and U 
and V are the corresponding dimensionless velocities. Equations (1)  and (2) are 
derived from the full Navier-Stokes equations by a simultaneous co-ordinate 
stretching and series expansion, and since the derivation is almost identical to 
that of the two-dimensional viscous-transonic equation (Sichel 1963) the details 
will not be reproduced here. Without the third-order viscous term (1) is the same 
as the inviscid axisymmetric transonic equation (Guderley 1962); without the 
term U,/R and with R replaced by Y ,  (1) becomes the two-dimensional viscous- 
transonic equation. 

The stretched dimensionless co-ordinates X and R, and the corresponding 
velocities U and V are related to dimensional co-ordinates 5, F, and velocities T i ,  
V by 

(3) 1 X = A@/+)) ,  R = [ i (y+ l)]*dA(T/9), 
(u/n*) = 1 + e U ,  (Via") = d [ & ( y +  l)]* v, 

where 

In (3) a* is the critical speed of sound while e is a small parameter proportional to 
the maximum deviation of (u/a*) from the sonic value. The characteristic length 
+) is equal to (p*"/ep*a*), which is of the order of the thickness of a weak shock. 
p" is the compressive or longitudinal viscosity (Hayes 1958) whilep is the density, 
and the asterisk refers to conditions at  the sonic point. The Prandtl number Pr" 
is based on the viscosity pn and is assumed constant. The relations between the 
deviations of the pressure, density, and temperature from their critical values and 
the velocity perturbation U are identical to those within an acoustic wave 
(Sichel 1963). 

A = Q(y + 1) [ 1 +  (y  - l)/Pr"]-l. 

U = Z(X) + 2a2 R2, The transformation 

S = X+aRz,  (4) 

which was also used by Tomotika & Hasimoto (1950), reduces the axisymmetric 
viscous-transonic equation to the ordinary differential equation 

2"'- 2 2 2 " -  2(2'-  o,a)(Z'+ w 2 v )  = 0, (5) 

where 0, = J5+ 1, w2 = 4 5 -  1.  

The flow described by (4) can be considered to be a nozzle flow by choosing one of 
the stream-tubes as the nozzle wall. Z(S) will be the value of U on the nozzle axis 
R = 0. The arbitrary constant a is related to the streamline curvature and will be 
discussed further below. 

Except for the value of the constants o1 and w2, (5) is identical to the ordinary 
differential equation considered in the two-dimensional case; therefore the pro- 
perties of (5) are similar to those of the two-dimensional equation, which has been 
discussed in detail by Sichel (1966). As before the inviscid solutions 

2 = W1a(S-b) ,  (6a)  
z =  - w2 a(S - b )  ( 6 b )  

also satisfy the viscous equation, and (6a )  represents the inviscid Meyer-type 
subsonic-supersonic accelerating flow. The arbitrary constant b locates the sonic 
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point 2 = 0. Again the behaviour of solutions of ( 5 )  in the Z", Z', Z phase space 
can be established by studying the two-dimensional trajectories obtained when 
Z is held constant, and there will be singularities where the inviscid solutions 
pierce the (2 = constant)-planes. The point 2' = dl r ~ ,  Z" = 0 will be a saddle-point 
for all Z while the point 2' = - w2 cr, 2" = 0 will be an unstable node, an unstable 
spiral point, a stable spiral point and a stable node respectively for Z correspond- 
ing to the ranges 

z > [2a(w, + wz)]4; [2v(w1 + wz)]4 > z > 0; 0 > z > - [2cr(w, + w,)]4; 

- [2cr(w, + w,)]4 > 2. 

Thus any solution starting near the inviscid accelerating solution will diverge 
from it for all 2; however, some of these solutions pass through a maximum and 
then asymptotically approach the inviscid decelerating solution. 

Numerical solutions of ( 5 )  representing stages in the transition from the Taylor 
to the Meyer type of flow are shown in figures 1 (a) ,  (b )  and (c) for cr = 1.0,0.5 and 
0.1, and were obtained by choosing initial values very close to the accelerating 
inviscid solution and lying on the directrix of the saddle-point in the corres- 
ponding (2 = constant)-plane. Integrating ( 5 )  once yields 

Z"-2(Z2')+2cr(w1-w,)Z+3w,w,cr2X = c,, ( 7 )  

and initial conditions Z(S,,), Z'(So) and Z"(8,) were chosen so that the constant 
C, = 0, for then it follows from (7) that the transitional solutions will be asymp- 
to t ic to2  = -o,crSasS-++coandtoZ = w,crSasS+-oo. 

In  figure 1, Z represents the nozzle centreline velocity distribution so that 
Z = 0 corresponds to the sonic point. As in the two-dimensional case, figure 1 
shows the gradual development of what appears to be a shock wave as the 
maximum of Z increases beyond the sonic value. With increasing Z,,, the 
velocity gradient steepens in the region of transition from supersonic to subsonic 
flow. The expansion scheme which provides the basis for the derivation of the 
viscous-transonic equation will be valid only if U ,  and hence 2, are O( 1)  ; there- 
fore the solutions with Z,,, greater than 2-0 to 3.0, while of interest with regard 
to the overall behaviour of ( 5 ) ,  cannot accurately represent the transition from 
the Taylor to the Meyer flow. As the parameter t~ decreases the supersonic- 
subsonic transition shifts to larger values of S for a given value of Z,,,. With 
v = 0.1 these transitions appear to closely approximate a normal shock wave 
with almost uniform upstream and downstream flow. 

Weak normal shock waves are to order E symmetrical with respect to the sonic 
point for, if the upstream velocity Ella* = 1 + eUl, the velocity U2/a* downstream 
of the shock will be 1 - EU,. Supposing Z,,, to be U, it can be seen that, as in two 
dimensions, nozzle flow transitions overshoot the corresponding downstream 
Hugoniot value U, = -emax. For subsonic Taylor-type flows with S < 0, Z di- 
verges from the inviscid solution Z = w1 crX very slowly, but for large positive 
values of X the solution Z(X) very rapidly deviates from the inviscid solution. On 
the other hand, even for X B 1 the solutions approach the decelerating inviscid 
solution 2 = - w, 08 very gradually. This behaviour can be verified analytically 

33-2 
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by studying the asymptotic behaviour of Z near. the two inviscid solutions as 
discussed below. 
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FIGURE 1 (a) ,  (b ) ,  ( c ) .  Niunerical solutions of the equation 

2’ - 222” ’  - 2(Z’ - o1 Cr)(Z’ + w 2  u) = 0. 
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3. Asymptotic behaviour 
Although ( 5 )  could only be solved numerically it is possible to determine 

analytically the asymptotic behaviour of Z(X) where it lies near the inviscid solu- 
tion& Thus from 

it follows that the perturbations el, c2 < 1 respectively where Z asymptotically 
approaches the inviscid solutions Z = w1 aS and 2 = - w2 vS. Substituting (8) 
into (7) for 2 and dropping terms of O(<:) and O(<i) then yields the following 
linear differential equations for Cl and c2 : 

z = w1 VS + el, z = - o2 as + <,, ( 8 )  

1 5; - 2w, axg; 7 2w, V<l = 0, 

5; + 2w2 iT&’<; + 2w1 V6, = 0. (9) 

Equations (9) are readily reduced to Weber’s equation and have the solutions 

el = eBwlbS2(C3 U[(w2/wl )  - 4, 81 + C, V [ ( W ~ / O J ~ )  - 4, S]}, 7 
(10) c2 = e-iwzgSZ(c5 u [ ( w l / w Z )  - i, 81 + C, v [ ( w l / w Z )  - 4, S]},  I 

where U ( a ,  S), V(a ,  S) are parabolic cylinder functions of 8 with parameter a as 
defined and tabulated by Miller (1964); and C,, C,, C, and C, are arbitrary 
constants. 

The numerical results for Z(X) (figure 1) indicate a difference in the behaviour 
of ll and c2 for large S and this can be verified from (10). Thus, using the asymp- 
totic expansion for U and V as S -+ + 00 (Miller 1964) and keeping only the largest 
term in each expansion, it follows that 

Cl(8) N C , S - ~ z / w l  [I + O( 1 / 8 2 ) ]  + C 4 X ( w 2 / w + 1 e w 1 g s 2  [1+o(1/82)1, } 
(11) 

For a given So the choice of <l(So), Q(S,), c;(X,) and <;(So) determines the con- 
stants in (10). Asymptotic expressions for the derivatives <;(#) and <;(&’) are thus 
required and can be determined by differentiating (9) and determining the asymp- 
totic behaviour of the solution of the resuItant Weber’s equation for <; and 6; 
with the result that, as S-too, 

<,(a) C5S(4*Jz)-l e-wz us2 [ 1 + O( 1/82)] + c, X - w 1 / 0 2  [ 1 + O( 1/82)]. 

<;(x) N - (w,/wl) c, S-’(wz/w1)+11 [ 1 + O( I/SZ)] 

{;(8) N - 2w 2 5  c g&’w1/”2e-~zu~~2 [1 + 0(1/W1 I (12) 

+ 2wlaC,S4~1 ewlrsa [ 1 +  0(1/#2)], 

- (w1/w2) c, fj-[(w1wz)+lI [1+0(1/S2)]. 

The need to differentiate the asymptotic expansions (1  1) directly, a procedure 
sometimes not valid (De Bruijn 1958), is thereby avoided. The form of (12) is such 
that C,, C,, C5andC, are the same as the constants in (1 l ) ,  and (1 1) can be recovered 
by integrating the asymptotic expressions (12). The constants in (10) can now be 
evaluated with the result that 

c1(X) = D(X/S,)-wz/w1 + E(X/&’o)(w2/w+1 exp(wlv(&’2- Xi)}, 
<,(X) = F(X/SO)(~2/~1)-1 exp{ - w,(r(S2 - 8;)) + G(S/So)-ul/w2, 

(13a) 

(13b) 
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1 

> 

\ -1 

where the subscript zero indicates values a t  S = So. 
(13a) shows that, except for the special case E = 0, l1(S) increases very rapidly 

for S > X,, as do the numerical solutions in figure 1. The term ( S / S , ) - w z l w i  dies out 
with increasing S and so will have little effect upon Cl. ( 1 3 4  is consistent with the 
saddle-point behaviour near 2 = w l v S  discussed previously, for cl(S) will tend 
to zero with increasing 19 only in the special case 

C l O  = - (w1lwz) f l 0 c ; o  

for which E = 0, otherwise gl increases with increasing 8. As S decreases, i.e. 
S < So, the exponential part of (13a) decays rapidly but the (S/So)-w21u1 term 
increases unless D = 0. The special solutions D = 0 and E = 0 thus correspond 
to solutions lying on the directrices of the saddle-point, and the solution which 
approaches 2 = w,vS as 8 decreases is clearly the one with D = 0. The numerical 
integrations were started near 2 = wluS and at  points lying on the directrix of 
the solution diverging from the point 2' = q g ,  2" = 0, in the appropriate 
(2 = constant)-plane, a procedure equivalent to choosing D = 0. Nevertheless, 
because of round-off errors the solutions always diverge from the inviscid solution 
when integrating backward from the starting point. 

Both terms of the expansion for I ; z ( X ) ,  (13b), tend to zero with increasing S in 
accordance with the fact that the point 2' = w 2 g ,  8" = 0 is a stable node in the 
(2 = constant)-plane for 2 < - 2 d ( w 2 +  1)i. The exponential term decays 
rapidly when S > So so that will be dominated by (X/S0)-w"w2 and so 
approaches the inviscid solution 2 = - w2 drelatively slowly as do the numerical 
solutions in figure 1. 

The asymptotic expansions for U(a ,  S )  and V(a,  S) presented by Miller (1964) 
are not valid for S < 0;  however, by using the expansion for U(a ,  - 8)  (Whittaker 
& Watson 1952) together with appropriate recursion formulas for U and V and 
redefining the standard solution for Weber's equation in the cases X < 0, (13a) 
and (13b) for Cl and C2 can be shown to be valid for S-t  -a. Now, however, for 
S > X,, X2 < S; so that the exponential term in (13a) decays rapidly while the 
power term (S/SO)-welW~ increases. Again in accordance with the numerical curves, 
2 deviates from the inviscid solution very slowly with increasing S as So +- - CQ, 

particularly since w2/wl = 0.382 in the axisymmetric case. 
From the inviscid solution of Tomotika & Hasimoto (1950) for 2 it  can be 

shown that N ISI-Ozlw~ and Cz N IXI-wllws as S+ F 03. The exponential terms in 
(13a) and (13b), which account for the difference in the behaviour of the subsonic 
and supersonic solutions, thus reflect the effects of viscosity. 
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The discussion of asymptotic behaviour given above is fully applicable to the 
two-dimensional case (Sicliel 1966) provided the two-dimensional values wl, 
w2 = 2.0, 1.0 are used in place of the axisymmetric values wl, w2 = ( , /5+ l), 

( 4 5  - 1) .  

4. Nature of the flow 
To compute the streamlines corresponding to the solutions in figure 1 the 

vertical velocity, V ,  must be known, and can be determined from the irrotation- 
ality condition and (7 )  with the result 

Y = 2~~22.55 + 4~2Rx'  + w2 a3R3 + &Cl R +C2 R-1. (14) 

The arbitrary constant C2 is taken to be zero since only solutions with finite V on 
the axis R = 0 are of interest. The constant C, merely translates the origin-of S 
and so, for convenience, will be taken as zero. Unlike ( 5 )  and the foregoing 
asymptotic analysis, (14) cannot be extended to the two-dimensional case. To the 
present order of approximation the streamlines satisfy the differential equation 

dr,/dx = eq(y + 1)/2]4 v, (15) 

where ?,&) is the variation of the radius ? along any given streamline. In  terms 
of Bs(x), (15) becomes 

dR,/dX = &?(y + 1) V .  (16) 

The significance of @in (16) and the relation between solutions in the (X-R)-  and 
physical (%?)-plane are the same as in the two-dimensional case (Sichel 1966). 

Generally it is desirable to  specify the ratio of throat radius Ft to  the radius of 
curvature of the nozzle wall streamline. To the present order of approximation 
the streamline curvature, Z-l, a t  any point in the flow is given by 

where L is the streamline radius of curvature. For most cases of interest the 
transition from supersonic to subsonic flow occurs well beyond the throat; 
hence, the flow in the immediate vicinity of the throat follows the inviscid 
solution, Z = w l a S ,  so that is given by 

(L/$)  = {%.Q[+(y+ ~ ) ] * R @ ( w ~ +  2)>-'. (18) 

With the ratio ?Jzt of throat radius to wall radius of curvature fixed at  p, the 
throat radius ?, will then be 

(19) 

The axial throat co-ordinate Zi is derived using the condition V = 0 at the throat 
as in the two-dimensional case (Sichel 1966). 

Isotachs, or lines of constant speed in the (?-@-plane correspond to curves 
along which U is constant to the present order of approximation, and so can be 
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determined from (4) and the numerical solutions for 2. I n  the region of inviscid 
flow the velocity perturbations EU and E ~ [ & ( Y  + l)]s V are given by 

when Ft is chosen as a reference length so that 

5 = ( X / F t ) ,  9 = (Firt). 
Integration of (15) using (21) for V/u* then yields the following expression for the 
wall streamline in the portion of the flow where 2 = w1 US : 

With &, the throat co-ordinate, given by 

(23) 

( 2 2 )  shows that 7 +a for sufficiently large 5, but for those solutions with Z and 
U N O(1) transition to subsonic flow occurs long before 7 diverges to infinity. 
Once 2 deviates from Z = w1 CTS, (15) can only be integrated numerically. 

The relation between the arbitrary constant CT and the nozzle flow field can be 
seen from (18) and (19). With E ,  +j and 71 fixed, the streamline radius of curvature 

varies inversely with vz for a given fixed radius R, and the velocity gradient of 
the inviscid solutions ahead of and behind the viscous transition decreases, as is 
evident from figure 1. As discussed previously with this decrease in velocity 
gradient the viscous transition, at least on the nozzle centreline, approaches the 
Taylor (1910) shock transition. For fixed /3 and e the nozzle throat radius Fl 
varies inversely with r ~ ,  (19). 

Typical isotach contours and streamlines for (T = 1-0 and 0.1, corresponding to 
curves A a,nd B in figures 1 (u) and 1 ( c ) ,  are shown in figures 2 (a )  and 3 ( b )  in the 
([-?)-plane. Figures 2 (a )  and 2 ( b )  have been drawn using numerical solutions 
with the same peak value of 2, and with wall streamlines corresponding to  
p = 0.31 as in the paper by Tomotika & Hasimoto (1950). Since the flow is axi- 
symmetric the isotachs are really the intersections of constant-speed surfaces 
with planes through the nozzle axis. 

The strange shape of the isotachs downstream of the region of rapid decelera- 
tion in figure 1 (b) results from the slight increase in Z ( S )  immediately behind the 
shock-like transition. The r~ = 0.1 wall streamline has a second minimum some 
distance downstream of the supersonic-subsonic transition; however, for stream- 
lines with p sufficiently small this second throat disappears. An inherent property 
of similarity solutions, such as presented here, is, of course, the inability to specify 
streamline shapes a priori. The shock-like nature of the supersonic-subsonic 
transition is clearly indicated, particularly in the case of u = 0.1. 
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FIGURE 2 (a ) .  Isotachs and streamlines corresponding to curve A in figure 1 (a) .  

- 
t = 0.1 y = 1.4 U/a* = 1+sU /I = Ft/zt = 0.21 cr = 0.1 

FIGVRE 2 ( b ) .  Isotachs and streamlines corresponding to curve B in figure 1 (c).  

5. Discussion 
The axisymmetric nozzle similarity solutions are quite similar to the two- 

dimensional solutions found previously (Sichel 1966). In  the present case the 
asymptotic behaviour of the solutions for the centreline velocity Z has been 
investigated, and the difference in the behaviour of the numerical solutions in 
regions of subsonic and supersonic flow has been verified analytically. The effect 
of the parameter cr upon the nozzle solutions has been examined. Figure 2(6) 
shows that when cr 6 1 solutions are obtained such that there is essentially a weak 
normal shock near the axis with effects of the wall and shock curvature occurring 
only for sufficiently large ;i; as was anticipated previously. 

The authors would like to express their appreciation to the Army Research 
Organization in Durham, N.C., for their support of this work under Contract 
DA-31- 124-ARO-D-376. 
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